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The paper presents an adaptive control scheme for recovering the original dynamics of
a nonlinear system after a sudden disturbance in a system parameter by controlling the
system parameter through linear feedback. The key problem is to choose the control
stiffness in the feedback by assigning the poles of the linearized controlled system in an
extended state space, which consists of the system state and the system parameter. The
paper gives the simulations of recovering the fixed point of the logistic map and the periodic
orbit of a harmonically forced Duffing oscillator from the chaos due to a large disturbance
in the parameter. The simulations demonstrate well the efficacy and the advantages of the
proposed adaptive control scheme.
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1. INTRODUCTION

A variety of non-linear mechanical systems in engineering possess several types of
steady-state motion attractors, such as periodic orbit, quasi-periodic torus and chaos. The
steady-state motion observed in practice depends on one or more system parameters (called
control parameters) and the initial state of the system as well. If the control parameter
of a system undergoes a large disturbance somehow, the steady-state motion of the system
may jump from the present attractor to another attractor. Thus, it is of considerable
interest to return the disturbed system to the original attractor through adjusting the
system parameters.

Specifically, the steady-state motion of a mechanical system can be described by means
of the Poincaré map with a control parameter vector m

uk+1 =F(uk , m), uk$Rn, m$Rm. (1)

A simple, but effective control scheme for recovering the original dynamics of a disturbed
system is to adjust the control parameter in such a way that its increment is proportional
to the difference between the goal state ug and the current state of the system at discrete
time k

mk+1 = mk − sT(uk − ug), s$Rn×m, (2)

where s indicates the control stiffness. Huberman and Lumer [1] demonstrated the efficacy
of scheme (2) for a one-dimensional map with a control parameter. They found that the
recovery time, i.e., the time spent by the recovery process, was proportional to s−1, s$R1

in general. Sinha and Ramaswamy [2] applied the scheme to a three-dimensional system
with one control parameter and a one-dimensional map with two control parameters.
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A key problem in this scheme is to decide on the choice of the control stiffness s. Sinha
[3] pointed out that if the goal state ug of a one-dimensional map is asymptotically stable
and the control stiffness s is small enough, the scheme will work. To shorten the recovery
time, he proposed an algorithm for increasing s experimentally and applied it to the logistic
map successfully. However, the problem remains open for choosing the initial value and
for high-dimensional systems.

The primary aim of this paper is to develop a new control scheme to solve the
open problem. For brevity, the exposition hereafter is confined to the system having one
control parameter, but the extension to the system with more parameters is
straightforward.

2. A NEW CONTROL SCHEME BASED ON POLE ASSIGNMENT

The adaptive control scheme suggested in this paper depends not only on the difference
between the goal state ug and the current state mk, but also on the difference between the
goal parameter mg and the current parameter mk

mk+1 = mg − s̄T$uk − ug

mk − mg%, s̄$R(n+1)×1. (3)

To determine the control stiffness s̄, equation (1) is linearized in the neighborhood of the
goal state ug that is a fixed point of map (1)

uk+1 = ug +A(uk − ug)+B(mk − mg), A$Rn× n, B$Rn×1. (4)

As usual, it is required that the linearized map be controllable with respect to the control
parameter. There follows the controllability matrix of rank n

C=[B=AB=· · ·=An−1B]$Rn× n (5)

By combining equation (3) and equation (4), a linearized map of dimension n+1 is
created,

nk+1 =$uk+1 − ug

mk+1 − mg%=0$A0 B
0%−$01%s̄T1$uk − ug

mk − mg%=(A�−B�s̄T)nk . (6)

By choosing an appropriate vector s̄ so that all eigenvalues of matrix A�−B�s̄T have
modules smaller than unity, the state nk+1 will be closer to zero than the state nk during
iteration. Thus, both the system state and the control parameter will approach the goal
values. Given the eigenvalues desired, the determination of vector s̄ is a problem of pole
asssignment for the linearized map (6). The possibility of arbitrary pole assignment
depends on the controllability of the linearized map (6), which contains the controllability
matrix

C�= [B�=A�B�=A�2B�=· · ·=A�nB�]=$01 b B0 b AB
0 b · · · bAn−1B

0 %=$01 C
0%$R(n+1)× (n+1). (7)

Noting that rank (C)= n is equivalent to rank (C�)= n+1, the poles of the controlled
system can be assigned arbitrarily by adjusting the control stiffness s̄.
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From the formula of pole assignment in control theory, the control stiffness to be
determined yields

s̄T = [bn+1 − an+1 bn − an · · · b1 − a1](C�W� )−1. (8)

where

an an−1 · · · a1 1

an−1 an−2 · · · 1 0

W� =G
G

G

G

G

K

k

* * * * * G
G

G

G

G

L

l

$R(n+1)× (n+1), (9)

a1 1 · · · 0 0

1 0 · · · 0 0

ai , i=1, 2, . . . , n+1 are the coefficients of the characteristic polynomial of matrix A�

det (A� − sI)=det $A− sI
0

B
−s%= sn + a1sn−1 + · · ·+ ans+0 (10)

and bi , i=1, 2, . . . , n+1 are the coefficients of the desired characteristic polynomial of
matrix A� −B�s̄T.

3. FEATURES OF THE CONTROL SCHEME

In contrast to current control schemes [1–3] the asymptotic stability of the controlled
system near the goal state here is independent of that of the original system. The new
scheme, therefore, enables one to direct the controlled system to an unstable state of the
original system, especially the unstable periodic orbit that is embedded in a chaotic
attractor and used as the goal of the OGY control scheme [4–5].

From the comparison of equation (2) with equation (3), it can be seen that the current
control schemes are a special form of the new control scheme in the case of

s̄=[s1 s2 · · · sn sn+1]T = [sT 1]T (11)

Hence, equation (8) provides a way of choosing the control stiffness s of the current
control schemes under the constraint of sn+1 =1.

The above procedure of choosing the control stiffness is based on the linearized map
(4), so the control stiffness is effective in the neighborhood of the goal state. If the
disturbance in the control parameter is large, the increment of the control parameter
determined from equation (3) may exceed a desired tolerance. Thus, it is necessary to
impose a saturation/cutoff condition on equation (3) in practice. A natural choice for the
cutoff range of the control parameter is the parameter interval from the goal value to the
disturbed value.

4. NUMERICAL SIMULATIONS

To make a numerical comparison of the new control scheme with those in references
[1–3], a number of control simulations were carried out. For brevity, the term HL will be
used to stand for the Huberman-Lumer schemes with constant control stiffness, SV for
the Sinha scheme with Variable control stiffness and PA for the new scheme based on Pole
Assignment. Furthermore, PA-1 and PA-2 will be used respectively according to whether
the constraint sn+1 =1 was active or not in the pole assignment procedure of control
simulations.
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4.1.   

The first example chosen is to control the logistic map through an adaptive control
parameter m as follows

6uk+1 = mkuk(1− uk)
mk+1 = mg − s1(uk − ug)− s2(mk − mg)

uk$[0, 1], mk , mg$[0, 4] (12)

Figure 1 presents the numerical simulations for returning the map to a stable P-1 fixed
point and an unstable P-1 fixed point respectively.

To check the efficacy of the control scheme in recovering a stable P−1 fixed point, the
parameter was set first at mk =1·5, 1E kE 50 control so that the map had a stable P-1
fixed point ug =0·3333. Then the parameter was altered to mk =3·9, 51E kE 100, where
the map behaved chaotically. At k=101, the above four control schemes were initiated
to return the map to the original fixed point. The poles of the controlled maps
corresponding to PA-1 and PA-2 schemes were placed at l1,2 = (3− mg)/2 and l1,2 =0.0
respectively. As shown in Figure 1, all schemes could recover the original P-1 fixed point
of the map from chaos. However, PA-2 scheme took the shortest recovery time since both
poles of the controlled map in this case had the minimal module.

In the second numerical simulation, the parameter was first set at mk =3·6, 1E kE 50
such that the map had an unstable P-1 fixed point ug =0·7222 embedded in a chaotic
attractor. Then the parameter was changed to mk =3·8, 51E kE 100. Subsequently,
the four control schemes were applied. The poles of the controlled map corresponding
to PA-1 and PA-2 schemes were still assigned as l1,2 = (3− mg)/2 and l1,2 =0.0. As

Figure 1. Recovering a stable P-1 fixed point of the logistic map. (a) HL scheme: s1 =0·1, s2 =1·0. (b) SV
scheme: 0·1Q s1 Q 1·6, s2 =−1·0. (c) PA-1 scheme: s1 =0·2813, s2 =−1·0. (d) PA-2 scheme: s1 =1·125,
s2 =0·5.
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Figure 2. Recovering an unstable P-1 fixed point of the logistic map. (a) SV scheme: 0·2Q s1 Q 12·8,
s2 =−1·0. (b) PA-2 scheme: s1 =12·76, s2 =−1·60.

analyzed above, the PA-1 and PA-2 schemes kept working, while the HL and SV schemes
failed to direct the disturbed system to the unstable fixed point. For the sake of space, only
the control processes of the SV and PA-2 schemes are presented in Figure 2. The
comparison of the two schemes shows that the new scheme can direct the system to an
unstable fixed point embedded in a chaotic attractor.

4.2.     

The second example considered was to control a harmonically forced Duffing oscillator
by adjusting the excitation amplitude m;

ẍ(t)+0·1ẋ(t)+ x3(t)= m cos t. (13)

The dynamics of this oscillator with respect to the excitation amplitude m has been
intensively studied. Through the use of stroboscopic sampling at the excitation period 2kp,
the forced oscillator can be described by a 2-dimensional Poincaré map with control
parameter m. Thus, all the control schemes mentioned above are directly applicable to the
system.

In the simulation, the oscillator was initially at rest and was subject to an excitation of
constant amplitude m=4·5 for the first 100 periods. After a short transient stage, the
motion of the oscillator became a stable P-1 orbit. In the next 100 periods, the excitation
amplitude was disturbed to m=7·5 so that the motion of the oscillator was chaotic. Then,

Figure 3. Recovering a stable P-1 orbit of a harmonically forced Duffing oscillator. (a) HL scheme: s1 =0·3,
s2 =0·0, s3 =−1·0. (b) PA-2 scheme: s1 =1·9698, s2 =0·4589, s3 =−1·3493.
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the above four control schemes were applied to the oscillator to recover the original stable
P-1 orbit. Figure 3 presents the control results of the HL and PA-2 schemes with three
poles placed at 0·1, 0·0 and 0·0. The new scheme shows again its advantage over the current
schemes in recovery time.

5. CONCLUSIONS

The control scheme suggested here is superior to current schemes proposed by
Huberman, Lumer, Sinha, etc. in the following two respects.
(i) The scheme enables one to choose the control stiffness according to desired poles of

the controlled system rather than guess the control stiffness or its initial value
empirically. As a result, the scheme takes the shortest time to recover the original
dynamics of a system.

(ii) The scheme can direct the system to a pre-determined unstable periodic orbit or fixed
point, which may be embedded in a chaotic attractor of the system and is used as the
goal of the OGY control scheme.
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